Số phức
Định nghĩa số phức
Số phức có dạng a+bi
- a, b là các số thực
- i là đơn vị ảo
Với i2=−1
Nếu ta lấy phần thực của số phức thì đó là a. Nếu ta lấy phần ảo của số phức thì đó là b.
Ví dụ số phức:
- 2 + 3i –> phần thực: 2, phần ảo: 3
- 4 - 2i
- -5 + i
- -6 - 4i
- 1.2 + 5.1i
- 4.4 = 4.4 + 0i –> trong trường hợp này, hệ số b của đơn vị ảo bằng 0
Vậy ta có thể thấy rằng số phức là trường hợp tổng quát hơn của số thực. Số thực là 1 trường hợp cụ thể của số phức (khi b = 0). Để dễ hình dung nhất về số phức. Ta tiến hành so sánh và minh họa cụ thể chúng trong không gian 2 chiều trong phần tiếp theo.